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ON TWO-DIMJ2NSIONALFLOW AFTER A CURVED SI!M?IONARY

SHOCK (WITH SPECIAL REFERENCE TO THE PROBLEM

OF DETACHED SHOCK WAVES)

By S. S. Shu

The problem of two-dimensional flow behind a curved stationary
shock wave is considered analytically. The method assumes a given ‘
shock-wave shape, which automatically deterpdnes certafn initid con-
ditions on the flow variables; and the flow pattern, including any
body shape, follows from the initial conditions. Approximate analytic
e~ressions are found for the stream function in the subsonic region
following the shock and, after the stream function is obtained, the
flow density is determined by Bernoulli’s equation which-connects the
density with the derivatives of the stream function. The final solution
can then be determined from the velocity field thus obtained.

INTRODUCTION

The problem of compressible flow after a curved shock wave has been
investigatedby various authors (references 1 to 4). In the analytical
treatments, the main interest has so far been concerned with the local
properties of the flow, such as the relations between the gradients of
various physical and geometrical quantities along the shock wave and
those along the body.

The purpose of the present work is an attempt to treat analytically
the two-dimensional problem after the shock in the large. The method
assumes a given shock-wave shape, which auto~tically determines certain
initial conditions on the flow variables. It is therefore a Cauchy
problem and the flow pattern, including any body profile, follows from
the assumed initial conditions. Approximate analytic expressions for
the stream function are found for the
subsonic region. The stream function
shock conditions but it satisfies the
mately. After the stream function is

compressible flow in the whole
thus found satisfies the exact
differential equation only approxi-
obtained, the flow density is

.
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determined by the exact Bernoulli equation which connects the gas
density with the derivatives of the stream function. Then the sonic
line can be determined from the velocity field thus obtained.

The author wishes to take this opportunity to thank Professor
C. C. Lin for his val~ble criticisms and discussions.

This work was conducted at the Massachusetts Instittie of Technology
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOIS

Y ratio of specific heats of fluids

P1 free-stream pressure

P1 free-stream density

u free-stream velocity magnitude, assumed to be parallel
to x-axis

c1 free-stream velocity of sound

F (plUy) function determining shock shape (1)

.
(Xo,o) shock nose when F(0) = O

Po stagnation density after shock wave

co stagnation velocity of sound after shock wave

g2 = *X2 + ~y2 where ~ is stream function “

f-l complex variable in hodograph plane

((K- @/(i~+%%))

lo(r) parametric representation of a three-dimensional
with parameter r

curve

P,Q complex variables
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x = A F(PIUY) + ‘O equation for shock
f%u.-L

Ml

*(x)y)

tan T

P

P

G(~)

F(@,

Z,m

U,v

c

‘w

s,n

qt)9~

KI)K2

F(y)

@(x,Y)

h(fl)

Re

free-stream Mach number
((%/%)-’/2u = U/cl)

(stream function of flow after shock wave plUy on

the shock)

slope of shock wave at point on it

pressure after shock wave

density after shock wave
.

entropy function

function determining shock shape

constants defined by equations (8) ~

velocity components of flow after shock wave

.

local velocity of sound after shock waye

maximumvelocity magnitude of flow

tangential and normal directions at point on

tangential and normal components of velocity
immediately after shock wave

3

shock wave

of flow

constants defined by equations (18)

analytic function in real variable y

auxiliary,function defined by equations (22), . ..

arbitrary

real part

anamic function of ‘0 ‘

of a complex quantity
,, . .
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z =X+yi

fl(t )

t

Im

:0

7(p)Z(Q)

-)
tc(r)

:(y)

u =y+im

m .

analj-ticfunctionfor Weierstrass’ parametric represen-
tation of a minhEl surface

complex variabie occurring in Weierstrass’ formula for
minimal surfaces

imaginsry part of a complex quantity

vector function deftied by equation (29)

vector with components x, ,y,and w

complex-valuedvector functions of variables P
respectively; components denoted by subscripts
and 3

unit vector normal to tangential direction of ,?c

vector function $lefined’byequation (33)

complex variable

imaginary part of compl&x variable u

and, Q,
1, 2,

,(r)

FORMULATION OF PROBLEM

The present report is
duced by a two-dimensional
The fluid is assumed to be
particle, to be adiabatic.
streamline while it may vary from one streamline to the next.

concerned with a stationary shock wave pro-
body placed in a uniform supersonic stream. ‘
an ideal gas and.the process on any material
Thus, the entropy is constant along a

Let the coordinate axes be so chosen that the incoming free stream
is along the x-axis and that the shape of the shock wave is represented
by

.<

x = p(fiw)/f+]+Xo

*
0

(1) ,

.————. —.– —-—.- ..—— --— .———— ——-— —— —.
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where U is the

the free stream.

free-stream velocity and PI is the gas density in

As the shock wave must asymptoticallybecome the

/(7 asMach line at infinity, the function F’(plUy) +*1 M12

y 4too, where Ml is the free-stream Mach number. ,

Entropy of flow after shock waves.- The stream function *(x,y)

may be regarded as the amount of the flow across a curve joining the
point (x,y) to the point (XO,O). It must therefore be continuous across

the shock wave because of the continuity of the mass. Thus, on the
shock wave,

44X,Y) = P~uY

The slope of the shock wave is therefore.$

Since the entropy is constant along a streamline,
relation for the flow after the shock wave can be

,. .

P/P7 = G( $) P1/P17

(2)

(3)

the pressure-density
written,in the,form

(4)

where 7 is the ratio of the specific heats of the fluid, PI and p

are, respectivel.y~the pressues before and after the shock) and P1

and p are corresponding densities of the fluid. This entropy function
G(V) is now to be expressed in terms of the function F(V) which deter-
mines the shock shape. From the shock conditions, it canbe immediately
shown that

. 27M12 Sfi2T + (1 - 7)
P/Pi = (5)

Y+i

,
(y + l)M~2 Si112T,

P/Pi=
2 +“(7 - 1)M12 sin2T

(6)

.-. —... .. . . . ..—. —. .—— . ..— ..— —.. .— ——— .–-———..— -—- — —-
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Therefore

G(V) = 1
(y + 1)7+1

where F‘ =X’’(*).

[2yM12 + (1 - 7) 1 + (F’)2

{. }

] :~+(F’)3 +7-17
1 + (F’)2 1

(7)

Th& one has the formula

[

G’(V)/G(~) = 2F’(I$)I?”(*) z +~+:F, )2 - 1
1

(8a)

1 + Z(F’)2 1 + (F’)2

where

z=(l-
/

Y) (~M12 - 7 + 1)

m=
. 1[

22+(Y- 11)M12

(8b)

Fundamental.differential eq&t ion for stream function.- By the

definition of the stream function given above,

(8c)

1a--
pu=—

h

ww=-—axJ
From the equation of vorticity (reference

and Bernoulli’s equation along a

q2 =2
—+—=
2 7-”1

= I-G’(V)P7Pl (7 - 1)P17

streamline

q2 7—+—
2 7-1

Q_%2
P2

(9)

(lo)

( l-l)

——-
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it follows that

,

.

,

where

~2 2 2=U+v

~2 = YT/P

and ~ is the maximum velocity of the flow.

after referred to as the fundamental equation

(13)

(14)

This equation is here-

for compressible flow
after the curved stationary shock wave given by equation (l). In it,
the quantities u, v, c, and p are lmown functions of ~, ~,

and Vy determined by equations (9), (k), and (11).

It should be noted that equation (12) is equivalent to Crocco’s -
equation (reference 5) for vortex motion. In fact, one is immediately
derived from the other by the relation between the stream function
defined above and that defined by Crocco.

Shock conditions expressed in terms of derivatives of stream

function.- Let s and n be, respectively, the tangential and the
normal directions at a point on the shock wave. Then

(15)

From continuity of the flow across the shock it follows that

a-$-—=
as Pqn

}

=plusill T

(16)

-Pqt = -Pu COS T

- ..— -—— - . .—.—z -—— . . . . . . -----
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where qt - q~ are, respectively, the tangential and the normal

components of the velocity of the flow inunediatelyafter the shock
wave. Thus, by virtue of equations (15) and (6), the shock conditions
in terms of the derivatives of the stream function are transformed into
the following form:

F’(PIUY) .
v-~= P~u

1+ (F’)2(PJJy) - M12

1+ (F’)2(PJJY) I+ (F’)2(p1uy) +~M12

1

.(17)
(F1)2(P@)

*Y= P~u - P~u
l+(F’)2(%U0-M12 ‘

-1
\ 1 + (F’)2(PJ.Ty)1 + (F’)2pllJy + ~

() 2 %2

lkthematical”fomnulation of problem.- The problem of finding the
two-dimensional-flowpattern after a stationary shock wave given by ,
eqwtion (1) is then to find the solution of the fundamental equa-
tion (X2) with the conditions (17) on the shock wave. It is therefore
a Cauchy initial-valueproblem if the shock wave is given.

However, it should be noted that the stream function ~(x,y) thus
- obtained is, in general, many-valued if it is extended continuously (in
physical vari&bles) into the whole region after the shock wave. In the
actual case, it is expected that other shock waves are formed near the
tail of the body. Therefore the solution, once obtained, is limited
by such shocks. The flow farther downstream should be treated separately.
In fact, the flow after the shock wave canbe treated separately for the
subsonic region and the supersonic region.

Determination of physical variables.- After ~x,y) is found, the

density distribution maybe obtatied from .equations(4) and (11). The
velocity components may thenbe gotten from equation (9). It shouldbe
remrked that this determination is two-valued: One value of the
density corresponds to supersonic flow and the other, to subsonic flow.
The locationof the sonic line is therefore essential. When a solution \!

is obtained for $ (whether exact or approximate) the sonic line is
immediately given by the condition that the two roots in Bernoulli’s
equation for the density p are equal. This gives

.

-,

——— .—. —...—-———— ..— —. . ...— —
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Substituthg back into Bernoulli’s equation, it follows that

.

*X2+%2. ~@%
2

where

2 y+l
qM2 ~1 ~-

[)

22—

K!2=T cl_p: (Kl)7-1

7

( 18a)

(18b)

and c1 is the free-stream velocity of sound.

In order that the sonic line thus determined should pass through

the sonic point immediately after the shock wave, VX2 +!VY2 must

satisfy the exact shock condition on the shock wave.
.

Approximations.- In the following discussions, restrictions are put
on the shock shape such that

(1) The shock has its nose at (xo,O) where the shock is normal;

tkt is, F’(0) = O.

(2) F(Y) is analytic in the real variable y; moreover, F“(y) is
positive.

(3) The shock wve tends”to .a ~ch line asymptotically.

From the first.two assumptions it follows that F’(y) is a monotonic
* function Of y and yF’(y) a O. From the last assumption, it is seen

( -41’2.readily that O SF’(y) ~ M12

The effect of vorticity generated by the shock-can be.better under-
stood by examining the term in the right-hand side of the fundamental
equation (12) for $. From equations (8), the term on the right-hand
side of equation (12) is a product of F“($)P2~2 and a non~ensional

quantity. By a straightforward calculation this nondimensional factor is

.. ---- __-. T.._,__ ...--++----

q2

)

- (%2- 02 .

2

[

~7M12- l+(F’ )27-l
( j[

1

2+21+ (F’)2 “

27 ‘1 7-1

—.. .- ..- . .. ., ._ _. —--—. — —-- ._ ._.__,_. ._. _ __ _
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A rough esthat ion shows that it is bounded by

*

[1,-!EMl__ 1 ,. (“)2 2 (“’2- 1)5’2
(\MI’ - 1)1/2 1+ (“)2 “ ~’ - 1

( )(

7-1 2
7M12-— Ml’ + —

*7 )7-1

It is therefore clear that, for the free-stre,amMach number Ml close
to 1,,a perturbation process based on the parameter

( 5/2 2 7-~
) /(%

Ml’ - ~
)( )-~”1’+~

can be performed. The term in ~he right-hand side of equation (lZ?)
can %e neglected for the ffist approximation. In fact, for any Mach
number Ml in the general case,1 the nondimensional factor is an

infinitesimal of first order for small values of V and of second
order for large values of $. The assumptionof neglecting the effect
of vorticity is perhaps reasonable for a certain range of Ml greater

than unity.

In the following discussion the effect of vorticity will be neg-
lected in finding approxhate solutions for the stream function. The
subsonic region will now be treated analfiically by finding approxtite
solutions for the stream function. The exact shock conditions will be
satisfied but the fundamental equation (12) will be satisfied only with
the following approximations:

and

This

(1) “Theeffect of vorticity is neglected

(2) Equation (@) is simplified by an approximate
v/c as explicit functions ~ and ~

esthation follows the same line as the’one first..

b

estimation of u/c

suggested by’
Chaplygin (reference 6). The idea has been successfully applied by
many authors (references 7 to 10) for analytic treatment of subsonic “
flows. .

% upper bound for the nondimensional factor in terms of Ml only

can be determined. The following is a trivial one: ‘ .
.

( I
M12 - 1)2 Y&l’ - ~) (“12 + ~)

—. .- ——— —— —-——-—— —.
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.,

It may further he suggested

*

1-1.

that the solution of the simplified
.

equation for * satisfying the exact shock conditions may also serve
as a first approximation for the supersonic region in the case of a
thin body with a blunt nose. For such a case, the streamlines are
likely to be nearly straight in the supersonic region. As the approxi-
mate solution of ~ obtained from the above considerations represents
the true geometrical pattern of streamlines on the shock wave, far away .
from the body, and near to it, it may be expected to be a reasonable
approxtition in the whole region. However, this canbe applied only
if the two-dimensional body is an analytic curve. In case the body has
a discontinuity, the flow downstream should be treated separately from
the Jtachline passing through this point.

After having obtained the first approximation (covering both the
subspnic and the supersonic regions), an iteration procedure my then
be carried out. This is done by evaluating all quantities in equa-
tion (12) except V=, VW, and ~n from the approximate solution

and then solving the linear equation for $.,

AN ANALYTIC APPROXIMkl’ESOtiIOl?

FOR SUBSONIC REGIOJl

,.

IN THE”IARGE

equation (12) satisfying the initial conditions (17) on the shock will
now be approximately obtained by finding the stream function ~(x,y)
which satisfies the following shplified equation:

[()]vy 2 [()]V-X’$-Y-+1$X2’0
l-— l+r=+—

2 2*XY - ~ ‘@=
(19) ‘

P&J Po co

with the same initial conditions

“ ‘[i-%1
where

( 17). Equation (19) can be written as -

‘%+%1L- -d

$X2+ *Y2

= o’ (20)

.-, .
. . .

(21)

.

.—. ..—------- .. ..— — ..—.—— -- .--— -— .—. —— ——. —.——.— —- . .. ———- —- .—
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.

EquAion (20) implies the existence of a function @ such that

(22)

It is now readily seen that the above development is completely equiv-
alent to the Chaplygin theory. However, the usual physical interpre-
tations of @ and the partial derivatives of @ and ~ are not
implied. The formal relations, however, remati-unchanged.

It is well-known that the function @ satisfies the equation for
the minhal surface and that the solution for @ and ~ can be
expressed as

d .,,

*- i@ = zpocoh(~) (23) ‘

dz =dx+iay

where h(fl) is an”arbitr&y analytic function, and

To satisfy the initial
the theory for minimal

Q=

h==+ ‘Oco

(24)

(25)

conditions (17), it is found convenient to apply
surfaces developed by Weierstrass, Bjorling,

,

. .. —z. -— ——— — —
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.,

and Schwarz (see reference 11). The final solution-maybe given in the
following differential form: -

●

&x=Re

(.

F’(Pi@

dy=Re

-[”

Iii

dflf+i d+-=
plu

+1

.

(l-#)+& (F’)2 1+ (F’)2-M12

l+(F’)21+(F’)a+~~a

1 1+ (F’)2 _ M12
F’-l+& 1

1
l+ (F’)21+(F’)2+~ M12

{1-#)+k2 (F’)2 ~+(F’)2-~l~~+(F’)2+yMl.
1 + (F’)2 r -1~qa‘l+(F’)2++

-1
I

l+(F’)2+GW2 I“d ~

t

+idP

(1-#)+#*F+(F’)2 -’ldE+(F’)2:’”’~
[l+(F’)2+7 1~ M12

2

where Re denotes the real part of a complex quantity,

k= Pp/Poco

and

and P is a ‘complexrunning variable. It
tion involves only the function F’(plUy)
wave.

may
for

\

a

/

be noted that this solu-
the slope of the shock

(26)

——— .-— —- -. ..— .— - —----— -——--————-——
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Weierstrass’ formula for ‘minimalsurfaces.- Weierstrass’ formula

mininud surfaces (reference Xl.)reads as follows:

I

[( 1- t2

]
x=Re ifl-tfl’ - z fl”

.[(

l+tz
Y g=Imlfl-*fl’’+~fl”

‘ ,j ,’

(27)

w=
[( 1

Re i -fl’ + tfl”

where fl is an analytic function of the complex variable t.

Now
,,

lf “’(t) at =d.h”(l/it)
tzl

lhom eqmtion (27) the following relation is immediately

(28)

derived:

(3.2=& + i @ = it ml (l/it) + ah (,1/it)/it

Since dw = Re itfl’”(t) dt = Re 2i’ dh (Q) = d#/poco, the above reh-

tion reduces to equation (24) if one sets O = l/it;

Shock conditions and B@ling problem.- As far as differential

equation (19) is concerned, the parametric function h(S2) in expres-
sion (24) always generates an exact solution. There are still shock
conditions to be satisfied. These conditions (17) raise the problem of
finding the solution in the large of the Cauchy initial-valueproblem
for minimal surfaces. Geometrically, it is now reduced to the problem
of finding the minimal”surface-when a piece of space curve and the
tangent plane at every point bn the curve are prescribed. The curve is

given in T(x,y,w) space with the following parametric representation
in vector form

[

; . F(PIUY)

o 1,Y, $/Pocop~u (29)

.- ——- —-



. . ,

N./WAm 2364 25

where

J’[Y= !@’ (PpY) + 9JY
o

with 9X and @y determined-by equations (22) and (17). tie

dire&tion of the normal of t~e tangent plane at a point

[( )/. 1“~ isgiven by(@x,@y,-Poco). This,geometrical .F pluy PIUj Y> ~oco

problem was first suggested by Bjdrling in 1844 and solved by’Schwarz
‘in 1874.

and
the

the

the

and

Schwarz formula.- Let ~ be a vector with componerits x, y,

w. Let ;(P) and ?(Q) be complex-valuedvector functions of
complex variables P and Q, respectiv~ly. The Schwarz formula

Bj6rling problem with the given curve ~ = to(r) and the normal
+2

tangent plane at anY point on the curve ?(r) such that K = 1
+–+t-
ICXEO=O,

(reference 11):

where

From the last
are isotropic

—

where rot is the tangent vector of the curve, is

fol?

of

two relations it follows immediately that both vectore
lines; that is,

(7)2 =(~’)2=o ‘

,

2:=:(P) +?(Q) (30)

d~(P) =d?o(P)+ i~(P), xd?o(Pfl (31),’

d?(Q) = d?o(Q) - i~( Q) x d?o(Qfl (32)

.. —-- .... . —....—.——.—.. — . ..—- —.— .—.— . — ..————-— —-- —
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As the minimal surface should ~e real one has only to take Q as the

function of ~te ‘f

complex conj P and ~, as the complex conjugate vector

.
,,

Exact solution of simplified differential eqution satisfying

shock conditions.- Now since

+

[ /
K = -#YPoco) -*JOCOY -

-g

and ~.#’ + *Y = PIU on the shock wave, it follows that

1- /
22Plu*y PO %J- -F’ + p1U&lpo2c02

= Ye(y) dy

Poco
dy

.

(33)

where $x and *Y are assigned values according to equation (17).

Let the components of this vector be denotedby ~JY), Yr2(Y),fi3(Y)lW.

If F(PIUy) iS

lytic extension in a
equation (30) is the

\

L A

an analytic function of y and possesses an ana-

domin in the b-plarie,where u = y + iu, then
differential form

r 12 d?=Re d?o(P) + i~(P) dP

Or,

[ 1P@qPo2co*
ax= Re F’(plUP) + f.

;’

w?

(W)

(35)

.— —- ——. —— ———
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dy=Re

d$ =

1-F’(PIUI?)+ Pl@xlPo2c02
l+i

~’-(2/P.2c.2) a .

(36)

—

Re

[

‘t+ (Pjq - Ifx – ~

~~j +‘“” (37)

From the definition of h($l),by equation (23), and relation (28), it
is evident that the last eqktion in equations (27) can also be written
as

d@+id~
= itf’’’(t)dt

‘Oco
(38)

Because of the fact that v(P) in equation (31) is an isotropic line

when F = Constant, or (7~’)2(p) + (72’)2(p) + (93’)2(p) =0, one can

find an analytic relation which transforms t into P so that

and

.

ql’(P) dp= i~fl’’’(t) dt
2

tz+l
92’(P) dP=_

2 ‘1“’(t) dt

113’(P)dp= itfl’’’(t)dt

(39)

(k))

(41)

.
. ....— - — .—-- . .— ...— —— .—. -..
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Therefore equation (37) can also be written as the

NACATIV236k

,,

fOllowing:

}.

+ iplu dP (42)

The final solution (26) is now obtained by substituting shock condi-
tions (17) into equations (35), (36),.and (k).

Massachusetts Instittie of Technolo~ -
Canibridge,Mass., July 6, 1949
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